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ABSTRACT

Processing In-Memory (PIM) has shown a great potential to ac-
celerate inference tasks of Convolutional Neural Network (CNN).
However, existing PIM architectures do not support high precision
computation, e.g., in floating point precision, which is essential for
training accurate CNN models. In addition, most of the existing
PIM approaches require analog/mixed-signal circuits, which do
not scale, exploiting insufficiently reliable multi-bit Non-Volatile
Memory (NVM). In this paper, we propose FloatPIM, a fully-digital
scalable PIM architecture that accelerates CNN in both training
and testing phases. FloatPIM natively supports floating-point rep-
resentation, thus enabling accurate CNN training. FloatPIM also
enables fast communication between neighboring memory blocks
to reduce internal data movement of the PIM architecture. We eval-
uate the efficiency of FloatPIM on ImageNet dataset using popular
large-scale neural networks. Our evaluation shows that FloatPIM
supporting floating point precision can achieve up to 5.1% higher
classification accuracy as compared to existing PIM architectures
with limited fixed-point precision. FloatPIM training is on average
303.2× and 48.6× (4.3× and 15.8×) faster and more energy efficient
as compared to GTX 1080 GPU (PipeLayer [1] PIM accelerator). For
testing, FloatPIM also provides 324.8× and 297.9× (6.3× and 21.6×)
speedup and energy efficiency as compared to GPU (ISAAC [2] PIM
accelerator) respectively.
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1 INTRODUCTION

Artificial neural networks, in particular deep learning [3, 4], have
wide range of applications in diverse areas including: object de-
tection [5], self driving car, and translation [6]. Recently, in some
specific tasks such as AlphaGo [7] and ImageNet Recognition [8],
deep learning algorithms presented human-level performance. Con-
volutional neural networks (CNN) are the most commonly used
deep learning models [5, 9]. Processing CNNs in conventional von
Neumann architectures is inefficient as these architectures have
separate memory and computing units. The on-chip caches do not
have enough capacity to store all data for large size CNNs with hun-
dreds of layers and millions of weights. This consequently creates a
large amount of data movement between the processing cores and
memory units which significantly slows down the computation.

Processing in-memory (PIM) is a promising solution to address
the data movement issue [10]. ISAAC [2] and PRIME [11] exploit
analog characteristics of non-volatile memory to support matrix
multiplication in memory. These architectures transfer the digital
input data into an analog domain and pass the analog signal through
a crossbar ReRAM to compute matrix multiplication. The matrix
values are stored as multi-bit memristors in a crossbar memory.
Although these PIM-based designs presented superior efficiency,
there are several limitations when using PIM for CNN training. First,
the precision of the design is bounded to fixed-point precision as
determined by the number of multi-bit memristors used to represent
a value. However, CNNmodels often need to be trainedwith floating
point precision to achieve high classification accuracy [12, 13].
For example, GoogleNet, trained with 32-bit fixed point values,
achieves 3% lower classification accuracy than the one trained with
32-bit floating points. In addition, earlier work showed that, without
enough precision, the model training is likely to diverge or provide
low accuracy [12–14]. Most commercial CNN accelerators train
their models using floating point precision, e.g., bfloat16 [15]. The
bfloat16 is a half precision floating point format utilized in Intel AI
processors, such as Nervana NNP-L1000, Xeon processors, and Intel
FPGAs [16–18], Google Cloud TPUs [19–21], and TensorFlow [21,
22].

Another limitation is that the state-of-the-art PIM-based designs
utilize costly digital-to-analog (DAC) and analog-to-digital con-
verter (ADC) blocks. For example, recent work in [23] designed
an analog-based memristive accelerator to support floating point
operations. However, the mixed-signal ADC/DAC blocks take the
majority of the chip area and power, e.g., 98% of the total area
and 89% of the total power, and do not scale as fast as the CMOS
technology does [2]. In addition, prior PIM designs use multi-bit
memristor devices that are not sufficiently reliable for commer-
cialization unlike commonly-used single-level NVMs, e.g., Intel
3D Xpoint [24]. Their very expensive write operations frequently
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occur during the training. For example, work in [25–27] extend
the application of analog crossbar memory to accelerate training,
but they still have expensive converter units and multi-bit devices.
PipeLayer [1] modified the ISAAC [2] pipeline architecture and use
spike-based input to eliminate ADC and DAC blocks. However, the
computation of PipeLayer still happens on the converted data and
its precision limits to fixed-point operations.

In this paper, we propose FloatPIM, a novel high precision PIM
architecture, which significantly accelerates CNNs in both train-
ing and testing with the floating-point representation. This paper
presents the following main contributions:

• FloatPIMdirectly supports floating-point representations,

thus enabling high precision CNN training and testing. To
the best of our knowledge, FloatPIM is the first PIM-based CNN
training architecture that exploits analog properties of the mem-
ory without explicitly converting data into the analog domain.
FloatPIM is flexible in that it works with floating-point as well
as fixed-point precision.

• FloatPIM implements thePIMoperations directly on a dig-

ital data stored in memory using a scalable architecture.

All computations in FloatPIM are done with bitwise NOR oper-
ation on a single bit bipolar resistive devices. This eliminates
the overhead of ADC and DAC blocks to transfer data between
the analog and digital domain. It also completely eliminates the
necessity of the multi-bit memristors, thus simplifying manufac-
turing.

• We introduce several key design features that optimize

the CNN computations in PIM designs. FloatPIM breaks the
computation into computing and data transfer phases. In the
computing mode, all blocks are working in parallel to compute
the matrix multiplication and convolution tasks. During the data
transfer mode, FloatPIM enables a pipelined, row-parallel data
transfer between neighboring memory blocks. This significantly
reduces the cost of internal data movement.

• We evaluate the efficiency of FloatPIM on popular large-

scale networks with comparisons to the state-of-the-art

solutions. In this paper, we show how FloatPIM accelerates
computations of AlexNet, VGGNet, GoogleNet, and SqueezeNet
for ImageNet dataset [28]. In terms of accuracy, FloatPIM sup-
porting floating point precision can achieve up to 5.1% higher
classification accuracy than the one using fixed point representa-
tion. In terms of efficiency, our evaluation shows that FloatPIM in
training can achieve 303.2× and 48.6× (4.3× and 15.8×) speedup
and energy efficiency as compared to the state-of-the-art GPU
(PipeLayer PIM accelerator [1]). In training, FloatPIM provides
324.8× and 297.9× (6.3× and 21.6×) speedup and energy efficiency
as compared to GPU (ISAAC PIM accelerator [2]) respectively.

2 BACKGROUND

2.1 DNN Training

Figure 1a show an example of neural networks in a fully-connected
layer, where each neuron is connected to all neurons in the previous
layer using weights. Figure 1a shows the computation of a single
neuron in the feed-forward pass. The outputs of the neurons in
the previous layer are multiplied with the weight matrix, and the
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Figure 1: DNN computation during (a) feed-forward and (b)

back-propagation.

results are accumulated in each neuron (aj ). The result of accumu-
lation passes through an activation function (д). This function is
traditionally a Sigmoid [29], but recently Rectangular Linear Unit
(ReLU) is the most commonly used [3]. The activation results are
used as the input for the neurons in the next layer.

The goal of the training is to find the network weights using the
gradient descent method. It runs in two main steps: feed-forward
and back-propagation. In the feed-forward step, it examines the
quality of the current neural network model for classifying a pre-
defined number of training data points, also known as batch size.
It then stores all intermediate neurons values (Zi ) and the deriva-
tives of the activation function д′(aj ) for all data point in a batch.
The next step is to update the neural network weights, often re-
ferred to the back-propagation step. Figure 1b illustrates the back-
propagation that performs two major tasks: error backward and
weight update.

Error backward:Back-propagation, first measures the loss func-
tion in the CNN output layer using:

J = −
1

m

m∑
i=1

k∑
j=1

(y
(i)
j )

Based on a chain rule, it identifies the gradient of the loss function
to each weight in the previous layer using:

d J

daj
=
∑
k

d J

dak

dak
daj

The error vector in a layer j (δj ) is computed backward depend-
ing on the error vector in the layer k (δk ) and derivatives of the
activation in a layer j (д′(aj )). Assuming δj = −d J/daj , the fol-
lowing equation defines the gradient of the entropy loss for each
neuron in the layer j:

δj where

{
(tj − yj ), if j is an output unit

−д′(aj )
∑
k δkWjk , if j is a hidden unit

In CNN, the convolution layer trains in a similar way to the fully-
connected layer, but with higher computation complexity. This is
because each output element in the convolution layers depends on
the movement of the convolution kernel through a range of the
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Figure 2: Digital PIM operations. (a) NOR operation. (b) 1-bit

addition.

input matrix. The following equation shows how convolution gets
the gradient of a loss function to each input:

d J
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Similar to the expansion of the equation in the fully-connected
layers, we have:

d J

da
j
r,s

=
∑
a

∑
b

[д′ar ,s ·

k1−1∑
m=0
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δ kr ,s

∗Z i
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where ∗ denotes the convolution.
Weight update: Finally, the weights are updated by subtracting
the current weights from the η.zi .δj matrix:

Wi j ←−Wi j − η
d J

dWi j
=Wi j − ηδjZi

where η is a learning rate, and Zi is the output of the neurons after
the activation function in the layer i . Note that both д′(aj ) and Zi
are calculated and stored during the feed-forward step.

2.2 Digital Processing In-Memory

Processing in-memory digitally involves input-based switching of
memristor, unlike the conventional memristor processing which
uses ADC/DAC blocks to convert data between analog and digital
domains. Digital PIM performs the computation directly on the
stored values in the memory without reading them out or using
any sense amplifier. Digital PIM has been designed in literature [30–
34] and fabricated in [35], to implement logic using memristor
switching. The output device switches between two resistive states,
RON (low resistive state, ‘1’) and ROF F (high resistive state, ‘0’),
whenever the voltage across the device, i.e.,p andn terminals shown
in Figure 2a, exceeds a threshold [36]. This property can be exploited
to implement NOR gate in the digital memory by applying a fixed
voltage,V0 across the memristor devices [30]. The output memristor
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Figure 3: Overview of FloatPIM.

is initialized to RON in the beginning. To execute NOR in a row, an
execution voltage, V0, is applied at the p terminals of the inputs
while the p terminal of the output memristor is grounded, as shown
in Figure 2. The aim is to switch the output memristor from RON

to ROF F when one or more inputs stored ‘1.’ value (low resistance).
Since NOR is a universal logic gate, it can be used to implement other
logic operations like addition [37, 38] and multiplication [39]. For
example, 1-bit addition (inputs being A,B,C) can be represented in
the form of NOR as,

Cout = ((A + B)′ + (B +C)′ + (C +A)′)′. (1a)

S = (((A′ + B′ +C ′)′ + ((A + B +C)′ +Cout )
′)′)′. (1b)

Here, Cout and S are the generated carry and sum bits of addi-
tion. Also, (A + B + C)′, (A + B)′, and A′ represent NOR(A,B,C),
NOR(A,B), and NOR(A,A) respectively. Figure 2b visualizes the
implementation of 1-bit addition in a memristor-based crossbar
memory. The processing cells, pc, store the intermediate results and
are not used to store data. Digital processing in-memory achieves
maximum performance when the operands are present in the same
row because, in this configuration, all the bits of an operand are
accessible by all the bits of the other operand. This increases the
flexibility in implementing operations in memory.

In-memory operations are in general slower than the correspond-
ing CMOS-based implementations. This is because memristor de-
vices are slow in switching. However, this PIM architecture can
provide significant speedup with large parallelism. PIM can support
addition and multiplications in parallel, irrespective of the number
of rows. For example, to add values stored in different columns
of memory, it takes the same amount of time for PIM to process
the addition in a single row or all memory rows. However, the
processing time in conventional cores highly depends on the data
size.

3 FLOATPIM OVERVIEW
In this paper, we propose a digital and scalable processing in-
memory architecture (FloatPIM), which accelerates CNNs in both
training and testing phases with precise floating-point computa-
tions. Figure 3a shows the overview of the FloatPIM architecture
consisting of multiple crossbar memory blocks. As an example,
Figure 3b shows how three adjacent layers (recall the structure
of layers and notations shown in Figure 1a) are mapped to the
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FloatPIM memory blocks to perform the feed-forward computation.
Each memory block represents a layer, and stores the data used in
either testing (i.e., weights) or training (i.e., weights, the output of
each neuron before activation, and the derivative of the activation
function (g’)), as shown in Figure 3c. With the stored data, the Float-
PIM performs with two phases: (i) computing phase and (ii) data
transfer phase. During the computing phase, all memory blocks
work in parallel, where each block processes an individual layer
using PIM operations. Then, in the data transfer phase, the memory
blocks transfer their outputs to the blocks corresponding to the next
layers, i.e., to proceed either the feed-forward or back-propagation.
The switches are shown in Figure 3b control the data transfer flows.

In Section 4, we present how each FloatPIM memory block per-
forms CNN computations for a layer. The block supports in-memory
operations for key CNN computations, including vector-matrix
multiplication, convolution, and pooling (Section 4.1.) We also sup-
port the activation functions like ReLU and Sigmoid in memory.
MIN/MAX pooling operations are implemented using in-memory
search operations. Our proposed design optimizes each of the ba-
sic operations to provide high performance. For example, for the
convolution which requires shifting convolution kernels across dif-
ferent parts of an input matrix, we design shifter circuits that allow
accessing weight vectors across different rows of the input ma-
trix. The feed-forward step is performed entirely inside memory by
executing the basic PIM operations (Section 4.2.) FloatPIM also per-
forms all the computations of the back-propagation with the same
key operations and hardware to the one used in the feed-forward
(Section 4.3.)

In Section 5, we describe how the memory blocks compose the
entire FloatPIM architecture. FloatPIM further accelerates the feed-
forward and back-propagation by fully utilizing the parallelism
provided in the PIM architecture, e.g., row/block-parallel PIM op-
erations. We show how these tasks can be parallelized for both
feed-forward and back-propagation across a batch, i.e., multiple
inputs at a time. It uses multiple data copies pre-stored in different
blocks in memory. Section 6 presents in-depth circuit-level details
of the PIM-based floating point addition and multiplication.

4 CNN COMPUTATION IN A FLOATPIM
BLOCK

In this section, we show how a FloatPIM memory block performs
the training/testing task1 of a single CNN layer. Figure 4 shows a
high-level illustration of the training procedure of a fully-connected
layer in FloatPIM. As discussed in Section 2, CNN training has two
steps: feed-forward and back-propagation. During the feed-forward
step, FloatPIM processes the input data in a pipeline stage. For each
data point, FloatPIM stores two intermediate neuron values: (i)
the output of each neuron after the activation function (Zi ) and
(ii) the gradient of activation function for the accumulated results
(д′(aj )). In the back-propagation step, FloatPIM first measures the
loss function in the last output layer and accordingly updates the
weights of each layer using the intermediate values stored during
the feed-forward step. As Figure 4b and c show, the error sequen-
tially propagates and updates the weights in the previous layer.

1Please note that only with the feed-forward step, FloatPIM supports the testing
task, i.e., inference, where an input data processes through different CNN layers.
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Figure 4: Overview of CNN Training.

CNNs use similar operations for both the fully-connected and
convolution layers. In the feed-forward step, the CNN computa-
tions are vector-matrix multiplication for the fully-connected layers
and convolution operation for the convolution layers. In the back-
propagation, FloatPIM uses the same vector-matrix multiplication
to update the weights for fully-connected layers, while the weights
of the convolution layers are updated using the in-memory vector-
matrix multiplication and convolution. In the next subsection, we
first describe how FloatPIM support basic testing/training opera-
tions of a single CNN layer in digital PIM.

4.1 Building Blocks of CNN Training/Inference
Vector-Matrix Multiplication: One of the key operations of
CNN computation is vector-matrixmultiplication. The vector-matrix
multiplication is accomplished by multiplications of the stored in-
puts and weights, and addition to accumulating the results of the
multiplications. Figure 5a shows an example of the vector-matrix
multiplication. As discussed in Section 2.2, the in-memory oper-
ations on digital data can perform in a row-parallel way, by per-
forming the NOR-based operations on the data located in different
columns. Thus, the input-weight multiplication can be processed by
the row-parallel PIM operation. In contrast, the subsequent addition
cannot be done in the row-parallel way as its operands are located
in different rows. This hinders achieving maximum parallelism that
the digital PIM operations offer.

Figure 5b shows how our design implements row-parallel opera-
tions by locating the data in a PIM-compatible manner. FloatPIM
stores multiple copies of the input vector horizontally and the trans-
posed weight matrix in memory (WT

i j ). FloatPIM first performs the

multiplication of the input columns with each corresponding col-
umn of the weight matrix. The multiplication result is written in
another column of the same memory block. Finally, FloatPIM accu-
mulates the stored multiplication results column-wise with multiple
PIM addition operations to the other column.

FloatPIM enables the multiplication and accumulation to per-
form independent of the number of rows. Let us assume that each
multiplication and addition take TMul and TAdd latencies respec-
tively. Thus, we requireM×TMul andN ×TAdd latencies to perform
the multiplication and accumulation respectively, where the size of
the weight matrix isM by N .
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Figure 5: Vector-matrix multiplication.

Figure 6: Convolution operation.

Convolution: As shown in Figure 6a, the convolution layer con-
sists of many multiplications, where a shared weight kernel shifts
and multiplies with an input matrix. A naive way to implement
the convolution is to write all the partial convolutions for each
window movement by reading and writing the convolution weights
repeatedly in memory. However, this method has high-performance
overhead in PIM, since non-volatile memories (NVMs) have slow
write operation.

FloatPIM addresses this issue by replacing the convolution with
light-weight interconnect logic for the multiplication operation.
Figure 6b illustrates the proposed method which consists of two
parts: (i) It writes all convolution weights in a single row and then
copies them in other rows using the row-parallel write operation
that happens just in two cycles. This method enables the input
values to be multiplied with any convolution weights stored in
another column. (ii) It exploits a configurable interconnect to vir-
tually model the shift procedure of the convolution kernel. This
interconnect is a barrel shifter which connects two parts of the
same memory.

Figure 6c shows the structure of a barrel shifter that provides
a 3-bits shift operation as an example. Depending on the BS con-
trol signals, a barrel shifter connects different {b1, . . . ,b6} bits to
{b ′1, . . . ,b

′
4}. The number of required shift operations depends on

the size of the convolution windows. For the example shown in
Figure 6b, for a 2×2 convolution window, the barrel shifter supports
a single shift operation using BS = 0 or BS = 1 control signal. Sim-
ilarly, for a n × n convolution kernel, the number of shift operation
is n−1. Our FloatPIM supports up to a 7×7 convolution kernel, and
it covers all the tested popular CNN structures. Note that FloatPIM
can also support n larger than 7 by rewriting shifted input matrices
into other columns.
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Figure 7: Back-propagation of FloatPIM.

Row-ParallelWrite Both vector-matrix multiplication and con-
volution require to copy the input or weight vectors in multiple
rows. Since writing multiple rows sequentially would degrade per-
formance, FloatPIM supports a row-parallel write operation that
writes the same value to all rows only in two cycles. In the first
cycle, the block activates all columns containing "1" by connecting
the corresponding bitlines to VSET voltage, while the row driver
sets the wordlines for the destination rows to zero. It writes 1s on
all the selected memory cells at the same time. In the second cycle,
the column driver connects only the bitlines which carry "0" bit to
the zero voltage, while the row driver sets the wordlines toVRESET .
This writes the input to all memory rows.

MAX/MIN Pooling: The goal of MAX (MIN) pooling layer is
to find a maximum (minimum) values among the neuron’s output
in the previous layer. To implement pooling in memory, we use
a crossbar memory with the capability of searching for the near-
est value. Work in [40] exploited different supply voltages to give
weight to different bitlines and enable the nearest search capability.
Using this hardware, we implement MAX pooling by searching
for a value which has the nearest similarity to the largest possible
value. Similarity the MIN pooling can be implemented by search-
ing for a row of a memory which has the closest distance to the
minimum possible value. Since the values are floating point, the
search happens in two phases. First, we find value with the highest
exponent; then for values with the same maximum exponent, we
search to find a value with the which has the largest mantissa.

4.2 Feed-Forward Acceleration
There are three major types of CNN layers: fully-connected, con-
volution, and pooling layers. For each type of the three layers, we
exploit different data allocation mechanisms to enable high paral-
lelism and perform the computation tasks with minimal internal
data movement. For the fully connected layer, the main computa-
tion is vector-matrix multiplication. CNN weights (Wi j ) are stored
as a matrix in memory and multiplied with the input vector stored
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in a different column. This multiplication and addition can hap-
pen between the memory columns using the same approach we
introduce for PIM-compatible vector-matrix multiplication. The
convolution is another commonly used operation in the deep neural
network, which is implemented using the PIM-compatible convolu-
tion hardware introduced in Section 4.1.

After the fully connected and convolution layers, there is an ac-
tivation function. We perform activation functions with a sequence
of in-memory NOR operations. For example, we perform the ReLU
function by subtracting all neuron’s output from the ReLU thresh-
old value (THR). This subtraction can happen in a row parallel way,
where the same THR value is written in another column of the
memory block (all rows). Finally, we write the threshold value in
a row-parallel way in all memory rows that the subtracted results
have positive sign bits. For the neuron’s output with negative sign
bits, we can avoid subtraction and instead write 0 value on all such
rows. We also support non-linear activation functions, e.g., Sigmoid,
using the PIM-based multiplication and addition based on Taylor
expansion. For example, for Sigmoid, we consider the first three
terms of the Taylor expansion (1/2 + 1/4ai − 1/48a3i ). The Taylor
expansion is implemented in memory as a series of the control
signals on the pre-activation vector stored in a column of a crossbar
memory. First, we exploit in-memory multiplications to calculate
different powers of the pre-activation values, e.g, a3 , in a row par-
allel way. Then, we multiply the values with a pre-stored Taylor
expansion coefficient, e.g., 1/4, 1/48, stored in reserved columns of
the same memory. Finally, the result of activation can be calculated
using addition and subtraction. Note that our approach parallelizes
the activation function for all neuron’s output of a DNN layer which
is stored in a single column but different rows of a memory block.
Moreover, since FloatPIM does not use separate hardware modules
for any layers but implements them using basic memory operations.
Hence, with no changes to memory and minimal modifications to
the architecture, FloatPIM can support the fusion of multiple layers.

4.3 Back-Propagation Acceleration
Figure 7 shows the CNN training phases in fully-connected layer:
(i) Error backward, where the error propagates through different
CNN layers. (ii) Weight update, which calculates the new CNN
weights depending on the propagated error.

Fully-Connected Layer: Figure 7 shows the overview of the
DNN operations to update the error vector (δ ). Figure 7a shows
the layout of the pre-stored values in each memory block in order
to perform the back-propagation. Each memory block stores the
weights, the output of neurons (Z ) and derivatives of the activation
(д′(a)) in a block for each layer.

During the back-propagation, δ vector is the only input to each
memory block. The error vector propagates backward in the net-
works. The error backward starts with multiplying the weights of
the jth layer (Wjk ) with the δk error vector. To enhance the perfor-
mance of this multiplication, we copy the same δk vector on the j
rows of the memory (as shown in Figure 7b). The multiplication of
the transposed weights and copied δk matrix is performed in a row
parallel way.

Finally, FloatPIM accumulates all stored multiplication results
(
∑
δjWjk ). One way is to use k ∗ bw-bits columns that stores all

the results of the multiplications where bw is the values bit-width.

Instead, we design an in-memory multiply-accumulation (MAC)
operation which reuses the memory columns for the accumulation.
FloatPIM consecutively performs multiplication and addition op-
erations. This reduces the number of required columns to bw-bits,
and results in significant improvements in the area efficiency per
computation. Assuming that TMul and TAdd take for multiplica-
tion and addition respectively, the multiplication of the weight and
δk matrix is computed in (TMul +TAdd ) × k . Since FloatPIM per-
forms the computation in a row-parallel way, the performance of
computation is independent on j . The result of

∑
δjWjk is a vector

with j elements (Figure 7b). This vector multiplies element-wise
by д′(aj ) vector in S cycles and row-parallel way. Note that during
feed-forward the д′(aj ) is written in a suitable memory location
which enables column-wise multiplication with no internal data
movement.

The result of themultiplication is aδj error vector, and it is sent to
the next memory block to update the weights (Figure 7c). The error
vector is used for both updating the weights (Wi j ) and computing
the backward error vector (δi ) in a layer i . Next, FloatPIM transfers
the δj vector to the next memory block which is responsible to
update theWi j weights. The δj vector is copied in i memory rows

next to theWT
i j matrix using the copy operation.

For the weight update, the δj matrix is multiplied with ηZi vec-
tor, where ηZi is calculated and stored during the feed-forward step.
This takes j ×TMul . As Figure 7b shows, the result of the multipli-
cation is a matrix with j × i elements. Finally, FloatPIM updates the
weights by subtractingWT

i j from the ηδjZi matrix. This subtraction

happens column by column and the result will be rewritten in the
same column as the new weight matrix. This reduces the number
of required memory columns from k × bw to bw columns.

Convolution Layer: There are a few differences between the
feed-forward and convolution layers in the back-propagation step.
Unlike the feed-forward layer, the error term is defined as a ma-
trix, i.e., the error backward computes the error matrix in a layer
j (δ j ) depending on the error matrix in a layer k (δk ). The update
on the error matrix happens by computing the convolution of the
δ j and weight matrix, where the size of weights is usually much
smaller than δ (m,n << r , s). This operation can be implemented
in-memory using the same hardware we used to accelerate the
convolution in the feed-forward layer. Next, the generated matrix
from the convolution is multiplied with the derivatives of the ac-
tivation function (д′), which is already stored in memory during
the feed-forward step. It is computed the same PIM functionalities
used for the fully-connected layers. Finally, the generated matrix is
convolved with Z i which is the matrix corresponding to the output
of the previous CNN layer. When a pooling layer is used, the Z i is
the output of that layer.

5 FLOATPIM ARCHITECTURE
Figure 8 shows the overview of the proposed FloatPIM architecture
processing multiple CNN layers. FloatPIM consists of 32 tiles, where
each tile has 256 crossbar memory blocks which have row and
column drivers (•A ). To support the convolution kernel, we exploit
the barrel shifter in each memory block. In both feed-forward and
back-propagation, FloatPIM needs to send the data to the next
memory block in order to continue the computation. FloatPIM
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Figure 8: FloatPIM memory architecture.

exploits switches which enable parallelized data transfer between
the neighboring blocks (•B ). The controller block calculates the
loss function and controls the row-driver, column driver and the
switches used for fast data transfer (•C ).

5.1 Block Size Scalability

Due to the existing challenges in the crossbar memory [41, 42],
each memory block is assumed to have a size of 1K × 1K . However,
to enable each block to process a single DNN layer, each block
needs much larger bitline, e.g., 16 − 32K to store input/output and
weight matrix. In addition, since our design extends NOR operation
to addition/ multiplication, it requires reserved bitlines to keep the
intermediate result of the computation. For N -bit addition and mul-
tiplication, each memory row requires to put 12 and 16N −19 bits re-
spectively for storing intermediate operations. However, since only
one of the additions/ multiplications happens at a time in a memory
block, the intermediate cells for addition and multiplication are
shared. In bfloat16, this results in only 93 additional memory cells
to support 7-bit mantissa multiplication. Thanks to the scalability
of the FloatPIM, i.e., working on digital data, FloatPIM performs the
computation on a few cascaded memory sub-blocks (•D ). All blocks
are controlled by the same column driver, but different row drivers
that enable fine-tune block activation. FloatPIM transfers data be-
tween two neighbor blocks in a row-parallel way by reading the
output of a block and writing it into the next memory. Regardless of
the number of values/rows, the execution time of this parallel data
transfer only depends on the bit-width of the values (N + 1 cycles
for N -bit data transfer). Cascading the blocks comes at the expense
of increasing the cost in internal data movement. Our evaluation
shows that cascading a block into 32 sub-blocks increases FloatPIM
execution time only by 3.8% (less than 3.4% energy overhead) as
compared to assuming ideal 1k × 32K block size.

5.2 Inter-layer Communication

During the data transfer phase, the results computed in onememory
block are written to another memory block as an input for the next
computation phase. Let us assume two fully-connected CNN layers

are mapped to two neighborhood blocks. The results of the PIM
operation of the first memory block need to be written as an input
in the second block. Assuming a CNN layer with 1K neurons, we
need to write 1K values to process the next computation.

To speedup the write, we design a switch which enables fast data
transfer between the neighboring memory blocks. The data transfer
between the blocks happen with rotation and write operations. For
example, in the feed-forward step, the generated vertical output
vector needs to be rotated and copied into several rows of the
next memory block (explained in Section 4.1). Similarly, in back-
propagation the generated δ vector of backward error needs to be
rotated and written in the next memory block to process the weight
update (explained in Section 4.3). The circuit in Figure 8(•E ) shows
how FloatPIM supports the rotation and write operations between
the blocks. FloatPIM locates the memory blocks such that the tail
of the neighbor blocks face together. Then, it exploits switches to
connect the adjacent memory blocks. Each block is connected to
its two adjacent neighbors. During the computation phase, these
switches are in off mode. So, each memory block can individually
perform its computation. Then, during the data transfer phase,
FloatPIM connects the blocks together in order to move data in a
row parallel way. For example, connecting S1 switches writes each
column of the Block 1 into a row of Block 2. This data transfer can
happen in a bit-serial and row-parallel way. Similarly, activation S2
control signal connects the Block 2 to Block 3.

Figure 8•F shows the functionality of FloatPIM memory blocks
working in a pipeline structure. Each memory block models the
computation of either a fully-connected or a convolution layer.
At the first cycle (T0), the switches are disconnected and all the
memory blocks are in the computing mode and work in parallel.
Then, FloatPIM works in the data transfer mode for two cycles. In
the first transferring cycles (T1), all odd blocks send their output
values to their neighboring blocks with even indices (S1 = 1, S2 = 0).
In the second transferring cycle (T2), the even blocks are sending
their generated output values to their neighbor odd blocks (S1 = 0,
S2 = 1). This enables to complete all the required data transfers
only within the two consecutive steps. For example, switches can
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Figure 9: FloatPIM training parallelism in a batch.

transfer a vector of values with bw-bits in 2 ∗ bw cycles, regardless
of the number of rows. Each FloatPIM tile can process data points
in the pipeline structure with d = T0+T1+T2 cycle width, whereT0
andT1 +T2 are the computing and data transfer cycles, respectively.

It should be noted that FloatPIM takes care of non-consecutive,
but the periodic connection in neural network layers, such as
ResNet [43]. For example, in ResNet, the output of each layer can
be used as an input in the next two consecutive layers. For these
cases, FloatPIM requires a different pipeline stage, wherein the data
transfer mode the output of a particular layer is sequentially sent
to the second and then the third block. For the cases with the non-
periodic connection, the controller reads the value of the block in a
row-parallel way andwrites them into another memory block. How-
ever, since these cases are not common, the proposed inter-block
communication can still significantly improve efficiency.

5.3 FloatPIM Parallelism
The proposed design parallelizes computations across memory
blocks and data located in different memory rows. In this section,
we describe other parallelization strategies exploited in our imple-
mentation.

Parallelization of Feed-Forward: The CNN training happens
in batch size windows (b). The batch size indicates the number
of training data points which process in feed-forward before the
back-propagation happen. In the feed-forward step, there is no
dependency between the computation of different inputs in a batch;
thus the feed-forward computation can be parallelized for all data
points in a batch as well. In order to enable feed forward parallelism,
FloatPIM replicates the CNN weights in different memory blocks,
where each memory can process the information of a single data
point in a batch. The number of tiles determines the feed-forward
parallelism. FloatPIM can work in the highest performance if Float-
PIM can parallelize the computation of all data point in a batch;
otherwise, it reuses the memory blocks to perform the computation
of multiple data points. In that case, each memory block needs to
store the weights corresponding to multiple layers in order to avoid
the costly write operation during feed-forward. In Section 7.6, we
explore the impact of the number of FloatPIM tiles.

Parallelization of Back-Propagation: FloatPIM keeps all in-
termediate neuron values (Z and д′) in memory and updates the
weights accordingly. Figure 9 shows the functionality of FloatPIM

memory blocks updating the weights of a CNN layer when there are
b data points in a batch. In the back-propagation, FloatPIM cannot
parallelize the computation in different layers, but the computation
of different data points in a batch can be parallelized in each layer.

FloatPIM may store the intermediate values of all data points in
a batch in a single memory block and processes them sequentially
(Figure 9a). It results in a lower power and memory requirement.
The efficiency depends on how many data points in a batch is pro-
cessed by a block. When P is less than b, we call this low power
configuration as FloatPIM-LP. To further improve the performance,
FloatPIM can parallelize the computation of different data points in
a batch by processing them in separated memory blocks (Figure 9b).
Each memory block stores the information from the feed-forward
in a specific batch, while all memory blocks need to store the same
weight matrix. The error backward for all blocks performs in par-
allel. To update the weights, FloatPIM collects the η.δ .Z vectors
from all memory blocks that process a data point in a batch. The
combined vectors are subtracted from the stored weight matrix, and
the updated weight matrix is written back into all memory blocks
in parallel. We call this fully-parallelized strategy as FloatPIM-HP.

6 IN-MEMORY FLOATING POINT
COMPUTATION

This work represents the very first implementation of floating point
addition andmultiplication in the crossbar memory. A floating point
number consists of a binary number stringwith three different parts:
a sign bit, an exponent part, and a fractional value. For example, the
IEEE 754 32-bit floating point notation consists of a sign bit, eight
exponent bits, and 23 fractional bits. The first bit in the floating
point notation (A32) represents the sign bit, where ‘0’ represents
a positive number. The next eight bits represent the exponent of
the binary numbers (A31, . . . ,A24), ranging from -126 to 127. The
following 23 bits (A23, . . . ,A1) represent the fractional part, also
known as mantissa, which has a value between 1 and 2.

6.1 FloatPIM Multiplication

Floating point multiplication involves: (i) XORing the sign bits, (ii)
addition of exponent bits, and (iii) fixed-point multiplication of
mantissa bits. In-memory floating point multiplication requires
storing the two operands and writing the result in the same row
of another column. In FloatPIM, we XOR the sign bits and add the
exponent bits using multiple NOR operations [37, 38]. While XOR
takes 6 cycles, addition takes 13Ne cycles, where Ne is the number
of exponent bits. The mantissa bits are multiplied in the way pre-
sented in [39]. While these operations are sequential, they can be
parallelized over all rows in the memory. The latency and energy
of FloatPIM multiplication can be formulated as:

TMul = (12Ne + 6.5N
2
m − 7.5Nm − 2)TNOR

EMul = (12Ne + 6.5N
2
m − 7.5Nm − 2)ENOR

6.2 FloatPIM Addition

Floating point addition involves: (i) left-shifting the decimal point
(right-shifting mantissa) to make the exponents same, (ii) addition
of shifted mantissa, (iii) normalizing the result. Assume the two
floating point numbers to be added are A and B, where As (Bs ), Ae
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Figure 10: In-memory implementation of floating point addition.

(Be ), and Am (Bm ) represent the sign, exponent, and mantissa bits
of A (B). We calculate the difference Ae − Be using an in-memory
fixed point subtraction and store the result as exp′. This subtraction
is implemented using multiple NOR operations as discussed earlier
Based on exp′, either Am is shifted by −exp′ (if exp′ < 0) or Bm is
shifted by exp′ (if exp′ > 0). We may accomplish it by reading out
exp′, and then shifting the mantissa bits accordingly. However, it
does not parallelize the operations over multiple rows, resulting in
high latencies.

In this paper, we propose a novel alternative approach that han-
dles exp′ based shift by using exact search operation shown in [44].
Figure 10 shows an illustration of the proposed procedure. We cre-
ate a new exponent, te , and two mantissas, tm1 and tm2, to be added
together. Here, te is the greater of Ae and Be . tm1 is equal to the
mantissa of the number with greater exponent, while tm2 is equal
to the shifted mantissa. To identify the greater exponent, we search
for ‘0’ in the memory column containing the sign bit of exp′. For
all the matched (unmatched) rows, te and tm1 are equal to Ae (Be )
and Am (Bm ) respectively. The copy operations for old exponents
and mantissas, i.e., te and tm1, are performed by column-wise NOT
operations, eliminating any read/write operation. Next, tm2 in all
rows is first initialized to ‘0’s. We then search for each number in
the range ±Nm in the columns containing exp′. Each search query
qexp where −Nm ≤ qexp < 0, tm2 is equal to Am right-shifted
by |qexp |. On the other hand, when 0 ≤ qexp ≤ Nm , tm2 is equal
to Bm right-shifted by |qexp |. (Nm − |qexp |)th bit of tm2 is set to
‘1’ to incorporate the hidden digit in floating point representation.
Shifting operation can be in turn carried out by simply copying the
data with a NOT operation at the target location. Finally, tm1 and
tm2 are added using fixed-point in-memory addition and stored as
t ′m . To normalize t ′m used as final mantissa, for all exp′ � 0, if the
addition of tm1 and tm2 results in a carry, t ′m is right-shifted by one
bit, while te is incremented by 1. If exp′ = 0, t ′m is right-shifted
by one bit and te is incremented by 1. Additionally, if the carry is
generated in this case, the MSB of the shifted t ′m is set to ‘1’. The
new t ′m (denoted as tm ) and te represent the output mantissa and
exponent bits, respectively. The latency and energy of FloatPIM

addition can be formulated as:

TAdd = (3 + 16Ne + 19Nm + N
2
m )TNOR + (2Nm + 1)Tsearch

EAdd = 2(Nm + 1)Esearch + 12(Ne + Nm )ENOR + NmEr eset

+[2(Ne + Nm ) + N 2
m/2 + Nm/2 + 1](Eset + Er eset )

where the values of energy and execution time of the basic opera-
tions can be found here:

Eset Ereset ENOR Esearch TNOR Tsearch

23.8f J 0.32f J 0.29f J 5.34pJ 1.1ns 1.5ns

7 EVALUATION

7.1 Experimental Setup

We have designed and used a cycle-accurate simulator based on Ten-
sorflow [45, 46] which emulates the memory functionality during
the DNN training and testing phases. For the accelerator design, we
use HSPICE for circuit-level simulations to measure the energy con-
sumption and performance of all the FloatPIM floating-point/fixed-
point operations in 28nm technology. The energy consumption and
performance are also cross-validated using NVSim [47]. We used
System Verilog and Synopsys Design Compiler [48] to implement
and synthesize the FloatPIM controller. For parasitics, we used the
same simulation setup considered by work in [37]. The robustness
of all proposed circuits, i.e., interconnect, has been verified by con-
sidering 10% process variations on the size and threshold voltage
of transistors using 5000 Monte Carlo simulations. FloatPIM works
with any bipolar resistive technology which is the most commonly
used in existing NVMs. Here, we adopt memristor device with a
VTEAM model [36]. The model parameters of the memristor, as
listed in Table 1, are chosen to produce switching delay of 1ns, a volt-
age pulse of 1V and 2V for RESET and SET operations in order to fit
practical devices [30]. Table 2 summarizes the device characteristics
for each FloatPIM component. FloatPIM consists of 32 tiles, where
each has 256 memory blocks to cover all the tested CNN structures.
Each tile takes 0.96mm2 area and consumes 7.64mW power. In total,
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Table 1: VTEAMModel Parameters for Memristor

kon −216.2m/sec VT,ON −1.5V xoff 3nm
koff 0.091m/sec VT,OFF 0.3V RON 10kΩ

αon,αoff 4 xon 0 ROFF 10MΩ

Table 2: FloatPIM Parameters

Component Params Spec Area Power

Crossbar Array size 1Mb 3449.6μm2 6.14mW
Shifter shift 6 levels 19.26μm2 0.69mW
Switches number 1K-bits 32.69μm2 0.42mW
Max Pool number 1 80μm2 0.38mW
Controller number 1 401.4μm2 0.65mW

Memory Block size 1Mb 3,468.8μm2 6.83mW

Tile
number
size

256 Blocks
256Mb 0.96mm2 7.64mW

Total
number
size

32 Tiles
8Gb 30.64mm2 62.60W

Table 3: Workloads

Model Size
Number of Layers Classification

ErrorConv FC

AlexNet [28] 224MB 5 3 27.4%
GoogleNet [49] 54MB 57 1 15.6%
VGGNet [8] 554MB 13 3 17.5%

SqueezeNet [50] 6MB 26 1 25.9%

FloatPIM takes 30.64mm2 area and consumes 62.60W power on
average.

7.2 Workload

We perform our experiment on ImageNet [28] which is a large
dataset with about 1.2M training samples and 50K validation sam-
ples. The objective is to classify each image to one of 1000 cat-
egories. We tested with four popular large-scale networks, i.e.,
AlexNet [28], VGGNet [8], GoogleNet [49], and SqueezeNet [50]
to classify ImageNet dataset, summarized in Table 3. We com-
pare the proposed FloatPIM with GPU-based DNN implementa-
tions (Conv:convolution, FC:fully-connected). The experiments are
performed using Tensorflow [46] running on NVIDIA GPU GTX
1080. The performance and energy of GPU are measured by the
nvidia-smi tool.

7.3 FloatPIM & Data Representation

Table 4 reports the classification error rate of different networks
when they train with floating point and fixed point representation.
For float precision, we used 32-bit floating point (Float-32) and
bfloat16 (bFloat) [43], a commonly used representation in many
CNN accelerators. For fixed-point precision, we used a 32-bit fixed
point (Fixed-32) and 16-bit fixed point (Fixed-16) representations for
FloatPIM training. For all networks, we perform the testing using
Fixed-32 precision. To achieve maximum classification accuracy, it
is essential to train CNNmodels using floating point representation.
For example, using Fixed-16 and Fixed-32 for training, VGGNet
provides 5.2% and 2.6% lower classification accuracy as compared
to the same network trained based on bFloat. In addition, we observe
that for all applications, bFloat can provide the same accuracy as
Float-32, while computationally processes in a much faster way.

Table 4: Error rate comparison and PIM supports.

Float-32 bFloat-16 Fixed-32 Fixed-16

AlexNet 27.4% 27.4% 29.6% 31.3%
GoogleNet 15.6% 15.6% 18.5% 21.4%
VGGNet 17.5% 17.7% 21.4% 23.1%

SqueezeNet 25.9% 26.1% 29.6% 32.1%
PIM Designs Support

Float-32 bFloat-16 Fixed-32 Fixed-16

ISAAC [2] � � � �

PipeLayer [1] � � � �

FloatPIM � � � �

Figure 11: FloatPIM energy saving and speedup using float-

ing point and fixed point representations.

This is because FloatPIM works based on the bitwise NOR operation,
thus it can simply ignore processing the least significant bits of
mantissas in floating point representation in order to accelerate
the computation. Table 4 lists the supported computation precision
by two recent PIM-based CNN accelerators [1, 2]. All existing PIM
architectures can support CNN acceleration just using fixed-point
values, which results in up to 5.1% lower classification accuracy
than floating point precision supported by FloatPIM.

Figure 11 shows the speedup and energy saving of FloatPIM, on
average for the four CNN models, using the fixed point and floating
point representation for the CNN training and testing. All results
are normalized to Float-32. Our evaluation shows that FloatPIM
using bFloat can achieve 2.9× speedup and 2.5× energy savings
as compared to FloatPIM using Float-32, while providing similar
classification accuracy. In addition, FloatPIM using bFloat model
can provide higher efficiency than Fixed-32. For example, FloatPIM
using bFloat can achieve 1.5× speedup, 1.42× energy efficiency as
compared to Fixed-32.

7.4 FloatPIM Training

Figure 12 compares the performance and energy efficiency of Float-
PIM with the GPU-based implementation and PipeLayer [1] which
is a state-of-the-art hardware accelerating CNN training using
ISAAC [2] hardware. For PipeLayer, we used read/write latency of
29.31ns/50.88ns and energy of 1.08pJ/ 3.91nJ per spike as reported in
the reference paper [1]. In addition, we used λ = 4 which provides
reasonable efficiency.

During training, CNN requires a significantly large memory size
to store the feed-forward information of different data points in a
batch. For large networks, this information cannot fit on the GPU
memory, thus it results in slow training. Our evaluation shows that
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Figure 12: FloatPIM efficiency during training.
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Figure 13: FloatPIM efficiency during the testing.

FloatPIM can achieve on average 303.2× speedup and 48.6× energy
efficiency in training as compared to GPU-based approach. The
higher efficiency of the FloatPIM is more obvious on the CNNs
with more number of convolution layers. Figure 12 also compares
FloatPIM efficiency over PipeLayer when it enables and disables the
in-parallel data transfer between the memory blocks. Our evalua-
tion shows that FloatPIMwithout parallelized data transfer provides
1.6× lower speedup, but 3.5× higher energy efficiency as compared
to the PipeLayer. However, exploiting switches significantly accel-
erates the FloatPIM computation by removing the internal data
movement between the neighboring blocks. Our evaluation shows
that FloatPIM enabling in-parallel data transfer can achieve on av-
erage 4.3× speedup and 15.8× energy efficiency as compared to
PipeLayer. The higher energy efficiency of FloatPIM comes from
(i) its digital-based operation which avoids paying the extra cost
of transferring data between the digital and analog/spike domain;
(ii) the higher density of the FloatPIM which enables significantly
better parallelism. The PipeLayer computing precision is bounded
to fixed point operations, while FloatPIM provides the floating point
precision which is essential for the highly accurate CNN training.

7.5 FloatPIM Testing

Figure 13 compares the performance and energy consumption of
FloatPIM with NVIDIA GPU and ISAAC [2] which is the state-of-
the-art PIM-based DNN accelerator. ISAAC works at 1.2GHz and
uses 8-bits ADC, 1-bit DAC, 128×128 array size where each mem-
ristor cell stores 2 bits. We used the same parameters reported on
the paper for the implementation [2]. We used FloatPIM (32-Tiles
configuration) with and without in-parallel data transfer between
the memory blocks. All execution time and energy results are nor-
malized to GPU results. Our evaluation shows that both PIM-based
architectures, i.e., ISAAC and FloatPIM, have significantly higher

efficiency than GPU, since they address the data movement issue
which is the main computation bottleneck of the conventional cores.

The results show that FloatPIM using bFloat implementation can
achieve on average 6.3× and 21.6× (324.8× and 297.9×) speedup and
energy efficiency improvement as compared to ISAAC (GPU-based
approach). Our evaluation shows that FloatPIM with no in-parallel
data transfer (no switches) can still provide 1.7× speedup and 3.9×
energy efficiency as compared to ISAAC. FloatPIM provides the
following advantages to ISAAC. (i) It eliminates the cost of internal
data movement between memory blocks, which is a major bottle-
neck of most PIM architectures. (ii) It removes the necessity of
using costly ADC and DAC blocks which takes the major portion of
the ISAAC area and power. In addition, these mixed-signal blocks
do not scale as fast as the CMOS technology does. (iii) FloatPIM is
fully digital and scalable architecture which can work as accurate
as the original floating point representation, while the precision of
analog-based design limits to the fixed point representation.

7.6 Impacts of Parallelism

Feed-Forward: In the feed-forward step, we define the parallelism
as the number of data points that can be processed in parallel. As
discussed in Section 5.3, to improve the feed-forward performance,
we can exploit different FloatPIM tiles to process different training
data points in parallel. Figure 14a shows the impact of the num-
ber of tiles on FloatPIM performance speedup. We observed that
increasing the number of tiles improves the performance of feed-
forward. For example, FloatPIM using 32-tiles can achieve 1.83×
higher performance as compared to FloatPIM with 16-tiles.

Back-Propagation: Unlike the feed-forward, the back propa-
gation has dependencies between the CNN layers. This eliminates
parallelizing the computation of different layers. However, in each
layer, FloatPIM can parallelize the computation of different data
points in a batch. In the low power design (FloatPIM-LP), a single
block of memory processes a small set of data points in a batch
(P = b/8). In contrast, the high-performance mode (FloatPIM-HP)
can process all data points in a batch process in a single memory
block (p = b). For the evaluation of this section, we considerb = 128
batch size for all the networks. Figure 14b,c show the speedup and
normalized energy consumption of FloatPIM for a different level of
parallelism. Our evaluation shows that increasing the parallelism
from p = b/8 to p = b improves the FloatPIM performance on
average by 78.3×.

This parallelism comes at the cost of lowering the energy effi-
ciency and increasing the effective memory size. The lower energy
efficiency is due to the cost of error vector aggregation from differ-
ent memory blocks in order to update the weights. FloatPIM-HP
provides on average 15.4% lower energy efficiency than FloatPIM-
LP. In addition, FloatPIM-HP requires to replicate the weight of
CNN layer in all blocks corresponding to different data points in a
batch. Figure 14d shows the normalized energy-delay product (EDP)
and memory size of FloatPIM using different back-propagation
parallelism. The results are normalized to FloatPIM-LP with the
serialized process. Our evaluation shows that FloatPIM-HP can
provide 8.2× higher EDP improvement while requiring 3.9× larger
memory as compared to FloatPIM-LP.
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Figure 14: The impact of parallelism on efficiency.

7.7 Computation/Power Efficiency

Unlike other PIM-based accelerators, FloatPIM makes very small
changes to the existing crossbar memory. FloatPIM in 32-Tiles con-
figuration takes 30.64mm2 area. Our evaluation shows that in Float-
PIM 95.1% of the area has been occupied by crossbar memory. The
extra interconnects and switches added to enable fast convolution
and inter-block connection only take 0.15% and 0.24% of the total
FloatPIM area (Figure 15a). In addition, FloatPIM does not require
to have fine-tuned control on the row/column drivers. To perform
column-wise NOR operation, we require to only select 3 bitlines
at a time. Similarly, the row driver can be activated on the entire
memory rows (for computation) or a single row (for read/write
operations). Our evaluation shows that multi-row activation results
in less than 0.01% area overhead. Similarly, the controller takes
about 3.0% of total chip area.

Figure 15b compares the computation (the number of 16-bit op-
erations performed per second permm2) and power efficiency (the
number of 16-bit operations performed per watt) of the FloatPIM
with ISAAC [2] and PipeLayer [1]. Since FloatPIM supports floating
point operations, we report the results as the number of floating
point operations (FLOPS), while for other PIM designs we report it
as the number of operations (OPS). Our result shows that FloatPIM
can achieve 2,392.4 GFLOPS/s/mm2 and 302.3 GFLOPS/s/mm2

computation efficiency in high performance and low power modes
respectively. The higher efficiency of FloatPIM-HP as compared to
ISAAC (479.0GOPS/s/mm2) and PipeLayer (1,485GOPS/s/mm2)
comes from its higher density which enables more computation to
happen in the same memory area. For example, ISAAC uses ADC
and DAC blocks which take a large portion of the area. In addition,
PipeLayer still requires to generate spike which results in lower
efficiency. In the low power mode, FloatPIM utilizes memory blocks
with a large bitline size (in order to process all data points in a
batch). This increases the area while the amount of computations
stays the same, regardless of the bitline size.

Figure 15: (a) FloatPIM area breakdown, (b) efficiency com-

parisons.

In terms of power, FloatPIM can provide much higher efficiency
than both ISAAC and PipeLayer. FloatPIM removes the neces-
sity of the costly internal data movement between the FloatPIM
blocks by using the same memory block for both storage and
computing. Our evaluation shows that FloatPIM in high perfor-
mance and low power modes can achieve 818.4GFLOPS/s/W and
695.1 GFLOPS/s/W power efficiency which are higher than both
ISAAC (380.7 GOPS/s/W ) and PipeLayer (142.9 GOPS/s/W ) de-
sign.

7.8 Endurance Management

FloatPIM operations involve switching of memristor devices. This
may affect the memory lifetime, given the endurance limits of
the commercially available ReRAM devices. We implement an en-
durance management technique to increase the lifetime of our de-
sign. As discussed before, FloatPIM reserves some memory columns
to store the intermediate states while processing. These columns
are the most active and experience the worst endurance degra-
dation. To increase the lifetime of the memory, we change the
columns allocated for processing over time. This distributes the
degradation across the block instead of being concentrated to a few
columns, effectively reducing the worst case degradation per cell.
It results in an increase in the lifetime of the device. For example,
for memory blocks in FloatPIM with 1024 columns, and with 93 of
them reserved for processing (in case of bfloat16), this management
increases the lifetime of the device by ~11×. We also perform a sen-
sitivity study of the lifetime of FloatPIM in terms of the number of
classification tasks that can be performed. We observe that for the
memory with endurance of 109 (1015) writes, FloatPIM can perform
3.1 × 108 (3.1 × 1014) classification tasks.

8 RELATEDWORK

There are several recent studies adopting alternative low-precision
arithmetics for DNN training [51]. work in [52, 53] proposed DNN
training on hardware with hybrid dynamic fixed-point and floating
point precision. However, in terms of convolutions neural network,
the work in [14, 54] showed that fixed-point is not the most suitable
representation for CNN training. Instead, the training can perform
with lower bits of floating point values.

Modern neural network algorithms are executed on different
types of platforms such as GPU, FPGAs, and ASIC chips [55–63].
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Prior work attempted to fully utilize existing cores to accelerate
neural networks. However, in their design the main computation
still relies on CMOS-based cores, thus has limited parallelism. To
address data movement issue, work in [64] proposed a neural cache
architecture which re-purposes caches for parallel in-memory com-
puting. Work in [65] modified DRAM architecture to accelerate
DNN inference by supporting matrix multiplication in memory.
In contrast, FloatPIM performs a row-parallel and non-destructive
bitwise operation inside non-volatile memory block without using
any sense amplifier. FloatPIM also accelerates DNN in both training
and testing modes.

The capability of non-volatile memories (NVMs) to act as both
storage and a processing unit has encouraged research in processing
in-memory (PIM). Work in[10, 66] designed NVM-based Boltzmann
machine capable of solving a broad class deep learning and opti-
mization problems. Work in [2, 11] used ReRAM-based crossbar
memory to perform matrix multiplication in memory and accord-
ingly designed architecture to design PIM-based accelerator for
CNN inference. Work in [25–27] used the same crossbar memory to
accelerate CNN training. Work in [23] exploited the conventional
analog-based memristive accelerator to support floating point op-
erations. They exploit the exponent locality of data and the limited
precision of floating point operations to enable floating point op-
erations on fixed-point hardware. In contrast, we enable floating
point operations inherently in memory and do not rely on data
pre-processing and scheduling, making FloatPIM a general floating
point accelerator which is independent of data. In addition, the ana-
log approaches require mixed-signal circuits, e.g., ADC and DAC,
which do not scale as fast as the CMOS technology scales. Work
in [1] proposed PipeLayer, a PIM-based architecture based on [2] to
accelerate CNN training by exploiting inter-layer and intra-layer
parallelism. PipeLayer eliminates using ADC and DAC blocks by
using the spike-based approach. However, similar to other PIM
architectures, PipeLayer precision limits to fixed-point operations.
In addition, it uses not sufficiently reliable multi-bit memristors,
which are hard to program especially during training with a large
number of writes.

Prior works exploited digital PIM operations to accelerate dif-
ferent applications such as DNNs [67–70], brain-inspired comput-
ing [31, 71], object recognition [72], graph processing [73, 74], and
database applications [40, 75]. However, those designs do not sup-
port high precision computation and incur significant internal data
movement.

9 CONCLUSION
In this paper, we proposed FloatPIM, the first PIM-based DNN
training architecture that exploits analog properties of the memory
without explicitly converting data into the analog domain. FloatPIM
is a flexible PIM-based accelerator that works with floating-point as
well as fixed-point precision. FloatPIM addresses the internal data
movement issue of the PIM architecture by enabling in-parallel data
transfer between the neighboring blocks. We have evaluated the
efficiency of FloatPIM on a wide range of practical networks. Our
evaluation shows that FloatPIM can achieve on average 4.3× and
15.8× (6.3× and 21.6×) higher speedup and energy efficiency as com-
pared to PipeLayer (ISAAC), the state-of-the-art PIM accelerator,
during training (testing).
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